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ABSTRACT 

In this paper we give necessary optimality conditions of Fritz-John and Kuhn-Tucker (KKT) conditions for     

non-linear infinite dimensional programming problem with operatorial constraints. We use an alternative theorem. Some of 

the known results in finite dimensional case have been extended to infinite dimensional case with suitable conditions. 
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1. INTRODUCTION 

The role of optimality criteria in mathematical programming is important from both theoretical and computational 

point of view. We consider here the general mathematical programming problem (P) given by  

(P) Min f(x) subject to  

G (x) ≤ 0, x ⋴ A, where A is a subset of X. 

Here f: X  ℝ is a function and G: X Y is an operator which may be differentiable, convex, non-smooth or 

non-convex and Y is a partially ordered vector space ordered by a closed convex cone with interior points.  

Many authors have investigated the optimality conditions for problem (P). It was Kuhn and Tucker who first 

established the necessary condition for (P) for differentiable functions with  

Y = ℝ. Kanniappan [10] established the Fritz-John and KKT conditions for convex objective and constraint 

functions and give some duality results also. Programming problems involving generalized convexity like invex, d-invex, 

preinvex, convexlike, quasi-convex etc have been investigated by many authors like Hirriatr-Urruty[6], Borewein, Craven 

and Mond, Clarke to name a few. Refer [1-3] and [6-11]. 

The purpose of this paper is to study programming problem involving a class of non-convex functions which are 

characterized by their directional derivatives. They are called directionally differentiable functions. Following A.D.Ioffe 

and T.M.Tihomirov[8] we call them locally convex functions. 

We do not assume the differentiability of the functions involved. We derive Fritz-John and KKT type optimality 

conditions. In section 2, we give some definitions and a theorem of the alternative. In section 3, we establish Fritz-John 

necessary condition and assuming Slater’s constraint qualification we prove the KKT conditions in section 4. 

2. PRELIMINARIES  

Throughout the paper, we let X and Y be locally convex topological Hausdorff spaces over ℝ. Let C be a closed 

convex cone with interior points so that (Y, C) is a partially ordered topological space and a neighborhood system {V} of 

the origin such that 

V = (V+C) ∩ (V-C). Such a cone is known as normal cone. The dual cone C
*
 is given by 
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C
*
= {y

*⋴ Y
*
 /<y

*
,y> ≥ 0,  y⋴ C}. 

We follow the convention: for y1, y2 ⋴ Y, 

y1 ≤ y2  y2 - y1 ⋴ C 

y1 < y2  y2 - y1 ⋴ C
o
  

Definition 2.1: Let X be a locally convex space. A function f: X→ ℝ is said to be a locally convex at x0 ⋴ X if (i) the one 

sided directional derivative of f at  in the direction of x ⋴ X given by 

 ' 0 0

0
0

( ) ( )
f ( ;  ) lim

f x x f x
x x







 
  exists for all x ⋴ X; 

(ii) x →f '(x0;x) is convex and continuous. 

Remark 2.1: Any continuous convex function is locally convex. However, there are locally convex functions which are 

not convex. 

Ex: h: ℝ → ℝ defined by h(x) = log (1 + ). Then f is locally convex function. However it is not convex.     

Refer [4,8]. 

Definition 2.2: Let G: X → Y be an operator. If the limit 

0 0

0

( ) ( )
lim

G x d G x







   

exists, then it is called the one-sided directional derivative of G at  in the direction d, and it is denoted by 

G'( . 

It is clear that G'(  is a positively homogenous operator.  

An operator G: X → Y is said to be locally convex at x0 ⋴ X, if (i) G'(  exists for all 

 x ⋴ X,  

(ii) x → G'(  is continuous and convex. 

Definition 2.3: Let f: X →ℝ be a locally convex function and x0 ⋴ X. The subdifferential of f at x0 denoted  is 

defined by 

 * * * '

0 0
( ) / , ( ; ) f x x X x x f x x x X       

It is clear that f(x0) = f '(x0;0). 

The elements of f(x0) are called the sub gradients of f at x0 and it is a w
*
-compact subset of X

*
. [4]. 

Definition 2.4: Let G: X→ Y be a locally convex operator. A continuous linear operator  
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T: X→ Y is said to be a sub gradient of G at x0 if T(x) ≤ G'(x0,x) for all x ⋴ X. The set of all subgradients of G at 

x0 is called the sub differential of G at x0 and is denoted by . G is said to be sub differentiable at x0 if  is 

non-empty. 

Definition 2.5: A locally convex operator G:X → Y is said to be regularly sub differentiable at x0 ⋴ X, if G is sub 

differentiable at x0 and satisfies 

 **

0

*

0

*

0

* y allfor   ),(/)())(( CxGTTyxGyxGy    

Moreau-Rockafellar Theorem  

Let f1, f2, ..., fn be convex functions on a locally convex space X. Then 

)...()(...)()(
2121 nn

fffxfxfxf   for every x ⋴ X. If at a point x0 ⋴ X, all the 

functionals f1, f2, ..., fn except possibly one are continuous, then 

)...()(...)()(
2121 nn

fffxfxfxf  . 

3. NECESSARY OPTIMALITY CONDITIONS OF FRITZ-JOHN TYPE 

Let f be a continuous locally convex functional defined on a locally convex space X, and let  

G be a continuous locally convex space Y. It is assumed that Y is ordered by a closed convex cone C with       

non-empty interior. We shall also assume that G is regularly sub differentiable on A, a convex subset of X. We consider 

the following programming problem: 

(P) Minimize f(x) subject to  

G(x) ≤ 0, x ∊ A. 

In this section, we prove a necessary Fritz-John optimality conditions for a vector to be optimal for (P).  

First, we prove the following Lemma. 

Lemma 3.1: Let A, X, Y and C be as defined above. Let G be operator. Then, either (a) or (b) of the following holds:  

 There is xo ∊ A such that G(xo) < 0; 

 There is y* ∊ C* such that y* ≠ 0 and <G(x), y* > ≥ 0, for all x ∊ A.  

Proof: Clearly (a) and (b) exclude each other. Now suppose (a) does not hold.  

Then G(A) ⋂ int (-C) = φ. 

Claim: conv(G(A)) ⋂ int (- C) = φ, where conv(G(A)) denotes the convex hull of G(A).  

Suppose for some o < α < 1, and xo and yo ∊ A, 

α G(xo) + (1 – α) G(yo) ∊ int(-C). 

Then K = [αG(xo)+ (1 – α) G(yo), - (αG(xo)+ (1 – α) G(yo))] is a neighbourhood of zero in Y [25]. As ‘+’ and ‘-‘ 

are continuous, there exists a neighbourhood n(α) around α and neighborhoods n(G(xo)), n(G(yo)) of G(xo) and G(yo) 

respectively, such that for all u ∊ n(G(xo)), v ∊ n(G(yo)) and µ ∊ n(α), µu + (1 - µ)v ∊ K. 
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In particular, for some µ < α, µG(xo) + (1 - µ)G(yo) ∊ K. 

(i.e.) αG(xo) + (1 - α )G(yo) ≤ µG(xo) + (1 - µ)G(yo)  

(i.e.) (α - µ)G(xo) ≤ (α - µ)G(yo) 

(i.e.) G(yo) ≤ G(xo). 

It follows that G(yo) ≤ αG(xo) + (1 – α)G(yo) < 0, which is a contradiction to the assumption.  

Hence conv(G(A)) ⋂ int(- C) = φ. 

So, by Hahn-Banach separation theorem, there exists a  

y* ∊ y*, y* ≠ 0 such that inf y* (conv(G(A)) ≥ sup y*(- C) = 0. 

Since C is a convex cone, sup y*(- C) = 0 

Hence y* ∊ C* and <G(x), y*> ≥ 0, for all x ∊ A. 

Hence the Lemma.  

Theorem 3.1: If xo is an optimal solution of the problem (P), then there exists λo ≥ 0, yo* ∊ C*, not both 

zero, such that 0 ∊ ∂f(xo) + yo* ∂G(xo)+ N(xo/A)             (1) 

and  

<G(xo), yo*> = 0.                (2) 

Proof: Let H: A - xo → ℝ × Y be defined by H(x) = (f ' (xo; x), G’ (xo; x) + G(xo)) 

It is clear that H is convex.  

We claim that there is no x̄ ∊ A - xo such that H(x̄) < 0. 

Suppose there is x̄ ∊ A - xo such that H(x̄) < 0. 

Then f '(xo; x̄) < 0 and G' (xo; x̄) + G(xo) < 0 

Since xo is a solution of (P), f(xo) ≤ f(xo + λx̄) for all sufficiently small λ. 

Hence f '(xo + λ x̄) ≥ 0 which is a contradiction.  

Thus there is no x̄ ∊ A - xo such that H(x̄) < 0. From Lemma I-1, there exists λo ≥ 0 and 

yo* ∊ C*, not both zero, such that  

λof ' (xo; x) + <G' (xo; x), yo* > + <G(xo), yo*> ≥ 0 for all x∊A-xo           (3) 

Setting x = 0 in (3), we get <G(xo), yo*> ≥ 0                            (4) 

Since G(xo) ≤ 0 and yo* ∊ C*, we also have <G(xo), yo*> ≤ 0 .            (5) 

From (4) and (5), we have  

<G(xo), yo*> = 0 .               (6) 

So, (3) reduces to λof '(xo; x) + <G'(xo; x), yo* > ≥ 0, for all x ∊ A - xo 

http://en.wikipedia.org/wiki/%E2%88%82
http://en.wikipedia.org/wiki/%E2%88%82
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That is, 

λof '(xo; x) + <G'(xo; x), yo* > ≥ λof '(xo; 0) + <G'(xo; 0), yo* >  

for all x ∊ A - xo.                 (7) 

λof '(xo; x) + <G' (xo; x), yo* > + δ(x/ A - xo) ≥ 

λof '(xo; 0) + <G'(xo; 0), yo* > + δ(0/ A - xo).                           (8) 

This implies that the function  

λof '(xo; .) + <G'(xo; .), yo* > + δ(./ A - xo) attains its minimum at zero. 

Hence, 0 ∊ ∂ (λof '(xo; .) + yo*∘G'(xo; .) + δ(./A - xo)) .            (9) 

By Moreau-Rockafellar theorem  

0 ∊ λo∂f(xo) + ∂( yo*∘G)( xo) + N(xo/A) .           (10) 

Since G is regularly subdifferentiable on A, we have ∂( yo*∘G) = yo∘∂G(xo)  

Therefore (10) reduces to  

0 ∊ λo∂f(xo) + yo*∘∂G( xo) + N(xo/A) 

This proves the theorem.  

4. NECESSARY AND SUFFICIENT OPTIMALITY CONDITIONS OF KUHN-TUCKER TYPE 

In theorem 3.1, if λo is zero, then the objective function f has no role to play in the necessary conditions. To avoid 

this undesirable situation, we have to guarantee that λo is strictly positive. 

To achieve this, we assume the following generalized constraint qualification of Slater’s type [1].  

Definition 4.1: We say that a constraint qualification of Slater’s type is satisfied by a programming problem of type (P), if 

there exists x' ∊ A such that G(x') < 0. That is, - G(x') is an interior point of the cone C. 

Note 4.1: Throughout the subsequent sections we assume the Slater’s constraint qualification.  

Theorem 4.1: Let X be a locally convex space and f a continuous locally convex functional defined on a convex set A ⊆ X 

and let Y be an ordered locally convex space with positive cone C with non- empty interior. Let xo ∊ A. Let G: X → Y be 

continuous and locally convex on A. Let G also be regularly sub differentiable on A. xo is an optimal solution of (P), if and 

only if there exist 

 yo* ∊ C* such that  

 0 ∊ ∂f(xo) + yo*∘∂G(xo) + N(xo/A),             (11) 

 and <G(xo), yo*> = 0.                            (12) 

Proof 

Necessity: By Theorem I-1, there exist λo ≥ 0, yo* ∊ C*, not both zero such that  

λof '(xo; x) + <G' (xo; x), yo* > ≥ 0, for all x ∊ A - xo .          (13) 

<G(xo), yo*> = 0 .              (14) 
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Suppose 0 = 0. Then <G’ (xo; x), yo* > ≥ 0, for all x ∊ A - xo          (15) 

Since Slater's constraint qualification is satisfied, there is x' ⋴ A such that G(x') < 0. 

There is x̄ such that x̄ +x0 = x' and G(x̄+x0) < 0, for some  > 0. 

From (14), it follows that G'(x0, x̄) < 0. .           (16) 

Thus  

<G'(xo; x̄), yo*> = 0 .             (16) 

Since G'(xo; x̄ ) < 0, there exists a symmetric neighborhood U of zero in Y such that  

-G'(xo; x̄ ) + U ⊆ C. 

Hence for every u ∊ U, we would have  

<u, yo*> ≤ <G'(xo; x̄), yo*> = 0 

which implies that yo* = 0 which is a contradiction to (λo, yo*) ≠ (0, 0) 

This proves the necessary part.  

Sufficiency 

Suppose xo is not optimal for (P).  

(11) implies by definition, 

f '(xo; x) + <G'(xo; x), yo*> ≥ 0, for all x ∊ A - xo. .          (17) 

Since we have assumed that xo is not optimal for (P), there exists x̄ ∊ A such that  

G(x̄) ≤ 0 and f (x̄)-f (xo) < 0 .            (18) 

Let d = x̄ - xo ∊ A - xo. 

Then (18) reduces to f(xo + d) – f(xo) < 0 .           (19) 

From (12) and (18), it follows that <G'(xo; x̄ ), yo*> ≤ 0 

From (17), we see that f '(xo; d) ≥ 0 which contradicts our assumption. 

This proves the sufficiency. 

Remark 4.1: If Y = ℝm
 and the functions involved are convex then Theorem 4.2 reduces to the following theorem.  

Theorem 4.2: In problem (P), suppose f, gi are continuous and convex functionals, i = 1, 2, …, m, A is a convex subset of 

X and for some x' ∊ A, gi (x') < 0 for i = 1, 2,…, m. x̄ is an optimal solution for problem  (P) if and only if there exist      

non – negative constants, λi i = 1, 2,…, m such that  

 λi gi(x̄) = 0, i = 1, 2,…, m and 

0 ∊      AxNxgxf
ii

 /)(
_

   

Remark 4.2: The necessity part of the above theorem 4. 2 was proved for a convex function by Schechter [11] using the 

theory of Dublovitski – Milytin . 
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CONCLUSIONS 

It is a known fact that the literature of mathematical programming is crowded with the necessary and sufficient 

conditions of Frit-John and Kuhn-Tucker type for point to be an optimal solution of a non-differentiable convex 

programming problem. In this paper, we have proved these conditions for a non-convex programming problem in a general 

locally convex space. Our method of proof is simpler than the classical method of convex and applicable to a larger class 

of functions. For instance, consider a class of locally Lipchitian functions. Clarke [2] has developed a nice theory of 

generalized gradients leading to sub differentiability which reduces to classical sub differentiability in convex case. 

Clarke's generalized gradients were extended to general locally convex spaces by Gwinner [5]. By suitable additional 

assumptions, the necessary conditions can be extended to these functions. 
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